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In a series of papers a so-called oscillator equation with an antisymmetric constant force
[1}4] is considered of the form

xK#sign(x)"0, (1)

with the initial conditions

x (0)"0, xR (0)"A, (2)

where

sign(x)"G
#1 for x'0,

!1 for z(0.

Lipscomb and Mickens [2] obtained the solution for x (t) over one period

x (t)"G
!

t

2
(t!2A) for 0)t)2A,

t2

2
!3At#4A2 for 2A)t)4A.

(3)

For values of t outside this interval, x (t) can be determined from the periodicity condition in
the following form:

x (t#n¹ )"x(t), ¹"4A. (4)

Here ¹ is a period, n is an integer.
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Solution (3) and (4) may be represented by the Fourier series as
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Solution (5) was also obtained by Govindan Potti et al. [3] in a direct way. Pilipchuk [4]
obtained a closed-form analytical solution by making use of the saw-tooth transformation
of the time proposed in reference [5]. Pilipchuk makes the following remark concerning the
Fourier series [4]:2&&It should be noted that the Fourier series form gives, in principal, an
approximate solution since it is impossible to account for the in"nite number of terms. As
long as one can keep &&any number of terms'', the above remark is not so important for the
smooth time histories. However, it becomes very important when dealing with either
a discontinuous function x (t) or its discontinuous derivatives. It is known that the
trigonometric series appear to be &&bad working'' around the discontinuities due to the
Gibbs phenomenon. In terms of acceleration, the series performs an oscillating error near
those points of time t at which the acceleration xK (t) has step-wise discontinuities switching
its value from !1 to 1 or back as it is dictated by equation (1)''.

The mentioned remark is true if one applies a simple summation of the Fourier series (as
it is known that it leads to a so-called ill-posed problem). However, one can utilize the
regularization properties of the PadeH approximants [6}11].

As an example consider the function sign (x) in the interval x3[!n, n]. This function has
the following Fourier representation:

f (x)"
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sin 9x#2B. (6)

The behaviour of f (x) in a neighbourhood of the point x"0 is well known. Namely,
a so-called Gibbs phenomenon is observed.

A choice of the sign(x) function is motivated by an observation that it is one of the
paradigm type functions exhibiting the so-called Gibbs phenomenon. If the PadeH
approximants can be satisfactorily used in this case, then also, a similar approach can be
applied for other functions.

In order to obtain a limiting geometrical picture of the function S
n
(x) (being a part of the

series (6)) for nPR, one needs to extend the extent of a vertical line x"0 linking the points
f (!0) and f (0) by about 18% upwards and downwards. The diagonal PadeH approximant
P(N, N, x) of the series (6) is given in reference [6], and has the following form:
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.



TABLE 1

Numerical results

N xN (N) P(N, N, xN )

2 0)68 1)0736
3 0)41 1)0419
4 0)28 1)0301
5 0)31 1)0242
6 0)16 1)0208
7 0)13 1)0185
8 0)11 1)0166
9 0)09 1)0152

10 0)08 1)0138
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The numerical results are presented in Table 1, where xN satis"es the relation
maxP (N, N, x)"P (N, N, xN ). From Table 1 it is seen, that in the case of the application of
the trigonometric diagonal approximants the Gibbs e!ect does not achieve 1%.

It should be noted that reference [7] has been devoted to the problem of the PadeH
approximants convergence and the Gibbs phenomena. Among others, the convergence of
the PadeH approximants to the sign(x) function and the essential decrease of the Gibbs
phenomena in this case has been proved mathematically.

In order to illustrate the results the function x (t)"sign(x) has been computed using
series (6) and formula (7) (see also reference [6]) for N"10 using the Mathematica package.
The obtained solutions are shown in Figure 1. In addition, the function x (t) has been
calculated using series (3) and the diagonal PadeH approximant using series (5) together with
formulas (1)} (3) and the comments given in reference [6]. The obtained results are
presented in Figure 2.

In conclusion one can say that in order to obtain the coe$cients of the PadeH
approximants one needs to solve a system of linear algebraic equations. This requirement
Figure 1. Approximations to x (t)"sign(x) using (a) formula (6) and (b) formula (7).



Figure 2. The approximation of the function x(t)"sign(x) using series (3) (solid curve) and the diagonal PadeH
approximant using series (5) (dashed curve) for (a) one and (b) three terms of the series (5).
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can lead, as in the previous case while summing the Fourier series, to an ill-posed problem.
However, the PadeH approximants possess the autocorrection (or self-correction) properties
[10, 11], which omit this drawback.

REFERENCES

1. J. B. MARION 1970 Classical Dynamics of Particles and Systems. New York: Academic Press.
2. T. LIPSCOMB and R. E. MICKENS 1994 Journal of Sound and <ibration 169, 138}140. Exact

solution to the antisymmetric, constant force oscillation equation.
3. P. K. GOVINDAN POTTI, M. S. SARMA and B. NAGESWARA RAO 1999 Journal of Sound and
<ibration 220, 378}381. On the exact periodic solution for xK#sign(x)"0.

4. V. N. PILIPCHUK 1999 Journal of Sound and <ibration 226, 795}798. An explicit form general
solution for oscillators with a non-smooth restoring force, xK#sign(x) f (x)"0.

5. V. N. PILIPCHUK 1996 Journal of Sound and <ibration 192, 43}64. Analytical study of vibrating
systems with strong non-linearities by employing saw-tooth time transformations.

6. KH. SEMERDYJEV 1979 Reports of the ;nited Institute of Nuclear Research P5-12484, 2}10.
Trigonometric PadeH approximants and Gibbs phenomenon (in Russian).

7. G. NEMETH and G. PARIS 1985 Journal of Mathematical Physics 26, 1175}1178. The Gibbs
phenomenon in generalized PadeH approximants.

8. I. V. ANDRIANOV 1991 Advances in Mechanics 14, 3}25. Application PadeH -approximants in
perturbation methods.

9. J. AWREJCEWICZ, I. V. ANDRIANOV and L. I. MANEVITCH 1998 Asymptotics Approaches in
Nonlinear Dynamics: New ¹rends and Applications. Berlin, Heidelberg: Springer-Verlag.

10. Y. L. LUKE 1980 Journal of Computational and Applied Mathematics 6, 213}218. Computations of
coe$cients in the polynomials of PadeH approximants by solving systems of linear equations.

11. G. L. LITVINOV 1994 Russian Journal of Mathematical Physics 1, 313}352. Approximate
construction of rational approximations and the e!ect of autocorrection error.


	Table 1
	Figure 1
	Figure 2
	REFERENCES

